259 research outputs found

    A Homogenous Luminescent Proximity Assay for 14-3-3 Interactions with Both Phosphorylated and Nonphosphorylated Client Peptides

    Get PDF
    The 14-3-3 proteins are a family of dimeric eukaryotic proteins that mediate both phosphorylation-dependent and -independent protein-protein interactions. Through these interactions, 14-3-3 proteins participate in the regulation of a wide range of cellular processes, including cell proliferation, cell cycle progression, and apoptosis. Because of their fundamental importance, 14-3-3 proteins have also been implicated in a variety of diseases, including cancer and neurodegenerative disorders. In order to monitor 14-3-3/client protein interactions for the discovery of small molecule 14-3-3 modulators, we have designed and optimized 14-3-3 protein binding assays based on the amplified luminescent proximity homogeneous assay (AlphaScreen) technology. Using the interaction of 14-3-3 with a phosphorylated Raf-1 peptide and a nonphosphorylated R18 peptide as model systems, we have established homogenous “add-and-measure” high-throughput screening assays. Both assays achieved robust performance with S/B ratios above 7 and Z’ factors above 0.7. Application of the known antagonistic peptides in our studies further validated the assay for screening of chemical compound libraries to identify small molecules that can modulate 14-3-3 protein-protein interactions

    Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of Geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Geranylgeranyltransferase I (GGTase I) has emerged as a cancer therapeutic target. Accordingly, small molecules that inhibit GGTase I have been developed and exhibit encouraging anticancer activity in preclinical studies. However, their underlying anticancer mechanisms remain unclear. Here we have demonstrated a novel mechanism by which GGTase I inhibition modulates apoptosis.</p> <p>Results</p> <p>The GGTase I inhibitor GGTI-298 induced apoptosis and augmented tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human lung cancer cells. GGTI-298 induced DR4 and DR5 expression and reduced c-FLIP levels. Enforced c-FLIP expression or DR5 knockdown attenuated apoptosis induced by GGTI-298 and TRAIL combination. Surprisingly, DR4 knockdown sensitized cancer cells to GGTI298/TRAIL-induced apoptosis. The combination of GGTI-298 and TRAIL was more effective than each single agent in decreasing the levels of IκBα and p-Akt, implying that GGTI298/TRAIL activates NF-κB and inhibits Akt. Interestingly, knockdown of DR5, but not DR4, prevented GGTI298/TRAIL-induced IκBα and p-Akt reduction, suggesting that DR5 mediates reduction of IκBα and p-Akt induced by GGTI298/TRAIL. In contrast, DR4 knockdown further facilitated GGTI298/TRAIL-induced p-Akt reduction.</p> <p>Conclusions</p> <p>Both DR5 induction and c-FLIP downregulation contribute to GGTI-298-mediated augmentation of TRAIL-induced apoptosis. Moreover, DR4 appears to play an opposite role to DR5 in regulation of GGTI/TRAIL-induced apoptotic signaling.</p

    c-FLIP Degradation Mediates Sensitization of Pancreatic Cancer Cells to TRAIL-Induced Apoptosis by the Histone Deacetylase Inhibitor LBH589

    Get PDF
    Great efforts have been made to develop novel and efficacious therapeutics against pancreatic cancer to improve the treatment outcomes. Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) is such a therapeutic cytokine with selective killing effect toward malignant cells. However, some human pancreatic cancers are intrinsically resistant to TRAIL-mediated apoptosis or therapy. In this study, we have shown that the histone deacetylase inhibitor LBH589 can synergize with TRAIL to augment apoptosis even in TRAIL-resistant cells. LBH589 decreased c-FLIP levels in every tested cell line and survivin levels in some of the tested cell lines. Enforced expression of ectopic c-FLIP, but not survivin, abolished the cooperative induction of apoptosis by the combination of LBH589 and TRAIL, indicating that c-FLIP downregulation plays a critical role in LBH589 sensitization of pancreatic cancer cells to TRAIL. Moreover, LBH589 decreased c-FLIP stability and the presence of the proteasome inhibitor MG132 prevented c-FLIP from reduction by LBH589. Correspondingly, we detected increased levels of ubiqutinated c-FLIP in LBH589-treated cells. These data thus indicate that LBH589 promotes ubiqutin/proteasome-mediated degradation of c-FLIP, leading to downregulation of c-FLIP. Collectively, LBH589 induces c-FLIP degradation and accordingly sensitizes pancreatic cancer cells to TRAIL-induced apoptosis, highlighting a novel therapeutic regimen against pancreatic cancer

    Statistical learning methods as a preprocessing step for survival analysis: evaluation of concept using lung cancer data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistical learning (SL) techniques can address non-linear relationships and small datasets but do not provide an output that has an epidemiologic interpretation.</p> <p>Methods</p> <p>A small set of clinical variables (CVs) for stage-1 non-small cell lung cancer patients was used to evaluate an approach for using SL methods as a preprocessing step for survival analysis. A stochastic method of training a probabilistic neural network (PNN) was used with differential evolution (DE) optimization. Survival scores were derived stochastically by combining CVs with the PNN. Patients (n = 151) were dichotomized into favorable (n = 92) and unfavorable (n = 59) survival outcome groups. These PNN derived scores were used with logistic regression (LR) modeling to predict favorable survival outcome and were integrated into the survival analysis (i.e. Kaplan-Meier analysis and Cox regression). The hybrid modeling was compared with the respective modeling using raw CVs. The area under the receiver operating characteristic curve (Az) was used to compare model predictive capability. Odds ratios (ORs) and hazard ratios (HRs) were used to compare disease associations with 95% confidence intervals (CIs).</p> <p>Results</p> <p>The LR model with the best predictive capability gave Az = 0.703. While controlling for gender and tumor grade, the OR = 0.63 (CI: 0.43, 0.91) per standard deviation (SD) increase in age indicates increasing age confers unfavorable outcome. The hybrid LR model gave Az = 0.778 by combining age and tumor grade with the PNN and controlling for gender. The PNN score and age translate inversely with respect to risk. The OR = 0.27 (CI: 0.14, 0.53) per SD increase in PNN score indicates those patients with decreased score confer unfavorable outcome. The tumor grade adjusted hazard for patients above the median age compared with those below the median was HR = 1.78 (CI: 1.06, 3.02), whereas the hazard for those patients below the median PNN score compared to those above the median was HR = 4.0 (CI: 2.13, 7.14).</p> <p>Conclusion</p> <p>We have provided preliminary evidence showing that the SL preprocessing may provide benefits in comparison with accepted approaches. The work will require further evaluation with varying datasets to confirm these findings.</p

    c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perifosine, an alkylphospholipid tested in phase II clinical trials, modulates the extrinsic apoptotic pathway and cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to augment apoptosis. The current study focuses on revealing the mechanisms by which perifosine enhances TRAIL-induced apoptosis.</p> <p>Results</p> <p>The combination of perifosine and TRAIL was more active than each single agent alone in inducing apoptosis of head and neck squamous cell carcinoma cells and inhibiting the growth of xenografts. Interestingly, perifosine primarily increased cell surface levels of DR5 although it elevated the expression of both DR4 and DR5. Blockade of DR5, but not DR4 upregulation, via small interfering RNA (siRNA) inhibited perifosine/TRAIL-induced apoptosis. Perifosine increased phosphorylated c-Jun NH<sub>2</sub>-terminal kinase (JNK) and c-Jun levels, which were paralleled with DR4 and DR5 induction. However, only DR5 upregulaiton induced by perifosine could be abrogated by both the JNK inhibitor SP600125 and JNK siRNA. The antioxidants, N-acetylcysteine and glutathione, but not vitamin C or tiron, inhibited perifosine-induced elevation of p-c-Jun, DR4 and DR5. Moreover, no increased production of reactive oxygen species was detected in perifosine-treated cells although reduced levels of intracellular GSH were measured.</p> <p>Conclusions</p> <p>DR5 induction plays a critical role in mediating perifosine/TRAIL-induced apoptosis. Perifosine induces DR5 expression through a JNK-dependent mechanism independent of reactive oxygen species.</p

    caGrid-Enabled caBIGTM Silver Level Compatible Head and Neck Cancer Tissue Database System

    Get PDF
    There are huge amounts of biomedical data generated by research labs in each cancer institution. The data are stored in various formats and accessed through numerous interfaces. It is very difficult to exchange and integrate the data among different cancer institutions, even among different research labs within the same institution, in order to discover useful biomedical knowledge for the healthcare community. In this paper, we present the design and implementation of a caGrid-enabled caBIGTM silver level compatible head and neck cancer tissue database system. The system is implemented using a set of open source software and tools developed by the NCI, such as the caCORE SDK and caGrid. The head and neck cancer tissue database system has four interfaces: Web-based, Java API, XML utility, and Web service. The system has been shown to provide robust and programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources

    Modulation of Bax and mTOR for Cancer Therapeutics.

    Get PDF
    A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistanc

    The Combination of RAD001 and NVP-BEZ235 Exerts Synergistic Anticancer Activity against Non-Small Cell Lung Cancer In Vitro and In Vivo

    Get PDF
    The phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit PI3K, mTOR or both are currently under development. The mTOR allosteric inhibitor, RAD001, and the PI3K/mTOR dual kinase inhibitor, BEZ235, are examples of these agents. We were interested in developing strategies to enhance mTOR-targeted caner therapy. In this study, we found that BEZ235 alone effectively inhibited the growth of rapamycin-resistant cancer cells. Interestingly, the combination of sub-optimal concentrations of RAD001 and BEZ235 exerted synergistic inhibition of the growth of human lung cancer cells along with induction of apoptosis and G1 arrest. Furthermore, the combination was also more effective than either agent alone in inhibiting the growth of lung cancer xenografts in mice. The combination showed enhanced effects on inhibiting mTOR signaling and reducing the expression of c-Myc and cyclin D1. Taken together, our results suggest that the combination of RAD001 and BEZ235 is a novel strategy for cancer therapy

    Mono- or Double-Site Phosphorylation Distinctly Regulates the Proapoptotic Function of Bax

    Get PDF
    Bax is the major multidomain proapoptotic molecule that is required for apoptosis. It has been reported that phosphorylation of Bax at serine(S) 163 or S184 activates or inactivates its proapoptotic function, respectively. To uncover the mechanism(s) by which phosphorylation regulates the proapoptotic function of Bax, a series of serine (S)→ alanine/glutamate (A/E) Bax mutants, including S163A, S184A, S163E, S184E, S163E/S184A (EA), S163A/S184E (AE), S163A/S184A (AA) and S163E/S184E (EE), were created to abrogate or mimic, respectively, either single or double-site phosphorylation. The compound Bax mutants (i.e. EA and AE) can flesh out the functional contribution of individual phosphorylation site(s). WT and each of these Bax mutants were overexpressed in Bax−/− MEF or lung cancer H157 cells and the proapoptotic activities were compared. Intriguingly, expression of any of Bax mutants containing the mutation S→A at S184 (i.e. S184A, EA or AA) represents more potent proapoptotic activity as compared to WT Bax in association with increased 6A7 epitope conformational change, mitochondrial localization/insertion and prolonged half-life. In contrast, all Bax mutants containing the mutation S→E at S184 (i.e. S184E, AE or EE) have a mobility-shift and fail to insert into mitochondrial membranes with decreased protein stability and less apoptotic activity. Unexpectedly, mutation either S→A or S→E at S163 site does not significantly affect the proapoptotic activity of Bax. These findings indicate that S184 but not S163 is the major phosphorylation site for functional regulation of Bax's activity. Therefore, manipulation of the phosphorylation status of Bax at S184 may represent a novel strategy for cancer treatment
    corecore